Nashir Umirov | Automobile Awards | Editorial Board Member

Assoc. Prof. Dr. Nashir Umirov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Assoc. Prof. Dr. Nashir Umirov is an accomplished engineering researcher and academic leader whose work advances the performance, reliability, and thermodynamic behavior of tractors, automobiles, and grain-processing machinery, with a focus on strengthening agricultural mechanization technologies for modern industry. His professional experience spans extensive teaching, research supervision, and applied engineering work, including several years of scientific and editorial engagement that support the development, evaluation, and dissemination of technical innovations. His research interests center on thermal and dynamic properties of vehicles, efficiency enhancement of automotive systems, and the mechanics of grain-crushing processes in industrial crushers, complemented by strong analytical skills in experimental testing, performance modeling, mechanical system optimization, and technology assessment. He has contributed to more than fifteen notable scientific publications and participated in two important research projects aimed at improving agricultural machine operations and advancing environmentally conscious engineering solutions. His research skills include experimental diagnostics, thermal analysis, vibration and dynamic modeling, mechanical system design, and result interpretation for system improvement. Although he is not affiliated with professional societies, he remains an active contributor to engineering scholarship and a committed mentor to emerging specialists. While awards and honors are not listed, his career reflects sustained professional impact and dedication to advancing engineering science. In conclusion, Nashir Umirov continues to enhance the scientific community through consistent research output, practical innovation, and a strong commitment to the evolution of mechanical engineering within the agricultural sector, reflecting the depth of his expertise and the relevance of his contributions to modern mechanization technologies.He has achieved 34 Citations, 14 Documents, 4 h-index.

Profiles:  Google Scholar Scopus | ORCID

Featured Publications 

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020. (5 citations)

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153. (5 citations)

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117. (5 citations)

Li, A., Sultanov, B., Sharipov, Z., & Umirov, N. (2021). Modelling the process of local application of manure under glass crops. IOP Conference Series: Earth and Environmental Science, 868(1), 012008. (4 citations)

Umirov, N., & Abdurokhmonov, S. (2021). Algorithm for calculating finned plate radiators for the cooling system of automobile and tractor engines. IOP Conference Series: Earth and Environmental Science, 868(1), 012002. (3 citations)

Nashir Umirov’s research strengthens agricultural mechanization by improving the thermal stability, efficiency, and reliability of vehicle and engine cooling systems essential for modern farming. His engineering innovations support sustainable agricultural productivity, reduced energy losses, and enhanced performance of critical agro-industrial machinery. His vision contributes to a future where smarter mechanical systems drive global food security and technological resilience.

Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Assoc. Prof. Dr. Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Dr. Abdurakhmanov Shavkatjon Khasanovich is a distinguished Associate Professor and PhD scholar renowned for his significant contributions to the field of agricultural mechanization and thermal dynamics within mechanical engineering. Currently serving at the Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, he has built a strong academic and research foundation focused on advancing the efficiency, performance, and sustainability of agricultural and automotive systems. His research interests span the thermal-dynamic properties of tractors and automobiles, as well as the optimization of grain crushing processes in crushers—critical areas that bridge agricultural engineering with energy efficiency and mechanical innovation. Over his academic career, Dr. Abdurakhmanov has actively participated in four major research projects and has contributed to over twenty peer-reviewed publications, demonstrating a robust commitment to applied research and practical engineering solutions. His professional experience includes teaching, mentoring, and conducting experimental studies on machine performance under varying operational conditions, thereby strengthening the technological framework for modern agricultural systems. With two years of editorial and research review experience, he brings analytical precision and scholarly rigor to the scientific community. His research skills encompass thermodynamic analysis, mechanical system design, process modeling, and equipment optimization for agricultural production. Dr. Abdurakhmanov’s dedication to advancing sustainable mechanization technologies has earned him recognition for his academic excellence and his role in driving innovation within Uzbekistan’s agricultural sector. His ongoing work continues to contribute to the modernization of agricultural machinery and the improvement of energy efficiency in mechanized systems, aligning with global goals for sustainable development and technological advancement.He has achieved 68 citations, 22 documents, 5h-index.

Profiles:  Google Scholar  |  Scopus | ORCID

Featured Publications 

Akhmetov, A., Botirov, R., & Abdurokhmonov, S. (2020). Mechanism for changing the rear axle clearance of a universal-tiller tractor. IOP Conference Series: Materials Science and Engineering, 883(1), 012125.

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020.

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153.

Abdurokhmonov, S., Alijanov, D., & Ismaylov, K. (2020). Forces affecting the grain movement in the working chamber of the rotary crusher. IOP Conference Series: Earth and Environmental Science, 614(1), 012110.

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117.

 

Dr. Abdurakhmanov Shavkatjon Khasanovich advances the understanding of thermal and mechanical processes in agricultural and automotive systems, contributing to improved efficiency and sustainability in machinery design. His work bridges engineering innovation with practical agricultural applications, enhancing productivity while reducing environmental impact—supporting global progress toward smarter, energy-efficient mechanization

Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Mr. Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Master Student in Sustainability in Polymer Technology | Deggendorf Institute of Technology | Germany

Mr. Amirmahdi Rahmani is a passionate and forward-thinking researcher whose work bridges sustainability, renewable energy, and advanced materials engineering. His academic foundation and professional journey reflect a deep commitment to advancing eco-friendly technologies and sustainable industrial practices. His research experience spans diverse domains, including green tribology, bio-lubricants, renewable energy systems, and polymer sustainability. Through his professional roles, he has contributed to enhancing mechanical and environmental performance in industrial applications, from improving the mechanical properties of lubricants to optimizing oscillating flow reactors for efficient mixing processes. His collaboration with leading institutions and companies such as Springer Nature, Pardis Shimi Bakhtar Co., and Iran Khodro Co. underscores his technical expertise and research integrity. Rahmani’s publications demonstrate a consistent focus on sustainability and innovation, with studies exploring bio-lubricants, nano-enhancers, zero-carbon village models, and wind energy optimization for greenhouse gas reduction. His research interests lie in sustainable materials development, circular economy integration, renewable energy conversion, and mechanical system optimization for low-carbon technologies. He is skilled in experimental design, computational modeling, life cycle assessment, and energy efficiency analysis, combining theoretical insights with practical applications. His achievements reflect academic rigor, professional discipline, and a global perspective on the transition to sustainable energy systems. Rahmani’s dedication to research excellence and his interdisciplinary approach position him as an emerging scholar in the fields of green technology and sustainable engineering. He has achieved 11 Citations, 3 documents, 2h-index.

Profiles:  Google Scholar Scopus

Featured Publications 

  1. Yousefi, H., Montazeri, M., & Rahmani, A. (2021). Techno-economic analysis of wind turbine systems to reduce carbon emission of greenhouses: A case study in Iran. In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021) (pp. 1–4). IEEE.

  2. Rahmani, A., Razavi, H. K., & Dehghani-Soufi, M. (2024). Green tribology assessment: A comprehensive review of bio-lubricants and nano enhancers. Energy Conversion and Management: X, 24, 100794.

  3. Yousefi, H., Rahmani, A., & Montazeri, M. (2023). Sustainable development through the establishment of zero-carbon villages. In Proceedings of the 8th International Conference on Technology and Energy Management (ICTEM2023). IEEE.

  4. Rahmani, A., Dehghani-Soufi, M., Fazeli, H., & Razavi, H. K. (2024). Experimental analysis of nano additive mixing in bio-lubricants: Implications for tribological performance using oscillatory flow technology. Available at SSRN 5118516.

    Mr. Amirmahdi Rahmani’s research advances sustainable energy and green tribology through innovative material science and renewable technology integration. His work bridges environmental engineering and mechanical optimization, providing scalable solutions for low-carbon industries. By combining experimental and techno-economic analyses, Rahmani contributes to the global transition toward sustainable manufacturing, clean energy systems, and environmentally responsible engineering innovation.

 

Rasool Ghobadian | Automobile Engineering | Best Researcher Award

Prof. Dr. Rasool Ghobadian | Automobile Engineering | Best Researcher Award

University Professor  |  Razi university  |  Iran

Dr. Rasoul Ghobadian is a distinguished academic and researcher in the field of water engineering, specializing in advanced hydraulics, sediment transport, flood modeling, and computational hydraulics. As a professor at the Department of Water Engineering, Faculty of Agriculture, Razi University of Kermanshah, he has contributed extensively to both academia and industry through innovative research, design expertise, and teaching excellence. His professional experience spans over two decades, including collaboration with leading consulting firms such as Saman Abraha Tose, Alborz Studies, and Dezab Consulting Engineers, where he participated in large-scale irrigation and hydraulic infrastructure projects involving surface irrigation networks, diversion dams, and intake systems. Dr. Ghobadian’s research integrates theoretical modeling with practical applications, focusing on seepage loss estimation, flood routing, and the hydraulic performance of river confluences and hydraulic structures, with publications in reputed international journals such as Journal of Hydrologic Engineering, Water SA, and Alexandria Engineering Journal. His expertise encompasses computational fluid dynamics, numerical modeling, and water resource system design. Recognized for his excellence, he has received multiple awards including Best Researcher and Exemplary Teaching Professor from the Faculty of Agriculture and the Department of Water Engineering. His research has greatly influenced sustainable water resource management and hydraulic engineering education. Dr. Ghobadian’s scholarly achievements continue to advance the global understanding of hydraulic systems and water infrastructure optimization. He has achieved 136 Citations,  30 Documents, 6 h-index.

Profiles: Google Scholar  ORCID  |  Scopus

Featured Publications 

  1. Ghobadian, R., & Bajestan, M. S. (2007). Investigation of sediment patterns at river confluence. [Unpublished study]. Citations: 51

  2. Ghobadian, R., & Mohammadi, K. (2011). Simulation of subcritical flow pattern in 180° uniform and convergent open-channel bends using SSIIM 3-D model. Water Science and Engineering, 4(3), 270–283. Citations: 35

  3. Ghobadian, R., & Meratifashi, E. (2012). Modified theoretical stage-discharge relation for circular sharp-crested weirs. Water Science and Engineering, 5(1), 26–33. Citations: 21

  4. Ghobadian, R. (2007). Investigation of flow, scouring and sedimentation at river-channel confluences. Ph.D. Thesis, Department of Hydraulic Structures, Shahid Chamran University of Ahvaz. Citations: 13

  5. Mobara, S. E. H., Ghobadian, R., Rouzbahani, F., & Đorđević, D. (2021). Numerical simulation of submarine non-rigid landslide by an explicit three-step incompressible smoothed particle hydrodynamics. Engineering Analysis with Boundary Elements, 130, 196–208. Citations: 12

Dr. Rasoul Ghobadian’s pioneering research in hydraulic and sediment transport modeling enhances the understanding of river dynamics, erosion, and flood management systems. His work bridges scientific innovation with engineering practice, contributing to the sustainable design of hydraulic structures, water resource optimization, and disaster resilience for communities and industries worldwide.

 

Samarendra Pratap Singh | EV Charging Infrastructure | Best Researcher Award

Assist. Prof. Dr. Samarendra Pratap Singh | EV Charging Infrastructure | Best Researcher Award

Assistant Professor | IET DrRMLAU Ayodhya UP | India

Dr. Samarendra Pratap Singh, IEEE Professional Member and EXECOM Member (UP Section), is presently serving as an Assistant Professor in the Department of Electrical Engineering at the Institute of Engineering and Technology, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India. He holds a Ph.D. in Electrical Engineering (Power Systems) from MMMUT Gorakhpur, completed under the guidance of Prof. S.N. Singh (IIT Kanpur) on the topic “Optimal Allocation of EV Charging Station and Peak Energy Demand Reduction Using Coordinated Real-Time Scheduling.” He earned his M.Tech. in Electrical Power Systems from NITTTR Bhopal and B.Tech. in Electrical Engineering from Kanpur Institute of Technology, Kanpur, With over a decade of academic and research experience, Dr. Singh has served in reputed institutions such as REC Azamgarh, REC Banda, and Government Polytechnic Mau, before joining IET Ayodhya . His research interests include Electric Vehicles, Power System Restructuring, Renewable Energy Integration, Smart Grids, Distributed Generation, HVDC and FACTS technologies, and AI/ML applications in power systems. His research skills encompass simulation-based optimization, real-time energy scheduling, EV charging coordination, and hybrid renewable system design. He has authored 10 refereed journal papers, presented papers at international conferences including IEEE and Springer venues, and delivered multiple invited lectures at national programs. Dr. Singh has successfully completed and leads projects funded by INAE and CST-UP, focusing on EV charging scheduling, energy harvesting, and hybrid turbine development. His excellence has been recognized through several awards, including the Commendable Research Award by MMMUT Gorakhpur and the Quality Research Paper Award by Dr. RMLAU Ayodhya. Dedicated to advancing sustainable power systems and mentoring young researchers, Dr. Singh continues to contribute to academia and innovation with remarkable enthusiasm. He has achieved  5 Citations by , 4 Documents, 1 h-index.

Profiles:  Google scholar | Scopus | ORCID

Featured Publications

  1. Singh, S. P., Singh, P. P., Singh, S. N., & Tiwari, P. (2021). State of charge and health estimation of batteries for electric vehicles applications: Key issues and challenges. Global Energy Interconnection, 4(2), 145–157. https://doi.org/ (ISSN: 2096-5117). Cited by 24.

  2. Thankachan, J., & Singh, S. P. (2017). Solar powered high performance switched reluctance motor for EV applications. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). IEEE. Cited by 6.

  3. Thankachan, J., & Singh, S. P. (2020). A reduced switch multiport converter drive for solar-assisted SRM EV with integrated driving and charging features. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE). IEEE. Cited by 5.

  4. Pamshetti, V. B., Thakur, A. K., Singh, S., & Singh, S. P. (2020). Coordinated operation of battery energy storage and VVC devices in high-PV penetrated distribution network. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE. Cited by 4.

  5. Suresh, D., Kumar, T. J., & Singh, S. P. (2020). Grid interconnection of renewable energy source with T-type inverter based DSTATCOM. In Proceedings of the 2020 International Conference on Computer Communication and Informatics (ICCCI). IEEE. Cited by 4.