Zixue Du | Automobile Engineering | Research Excellence Award

Prof. Zixue Du | Automobile Engineering | Research Excellence Award

Professor | Chongqing Jiaotong University  |  China

Prof. Zixue Du is a senior academic and research leader with extensive expertise in vehicle dynamics, rail transit systems, and transportation equipment engineering. His professional experience includes major leadership roles in mechatronics, vehicle engineering, and rail transit research, alongside active participation in national academic, industrial, and governmental advisory bodies. His research interests focus on straddle-type monorail vehicles, system integration, tire wear mechanisms, traction control, and safety assurance technologies. He has led and contributed to numerous national and provincial research projects, collaborated extensively with industry, and produced impactful scholarly outputs including journal publications, patents, monographs, and technical standards. His contributions have been recognized through multiple high-level scientific and technological awards, reflecting sustained influence in transportation engineering research and innovation. He has achieved 534 Citations,63 Documents, 11h-index.

 

Citation Metrics (Scopus)

600
400
200
100
0

534
Citations

63
Documents

11
h-index

Citations

Documents

h-index


View Research Gate Profile

View Scopus Profile

Top 5  Publications

Mehdi Modabberifar | Automobile Engineering | Research Excellence Award

Assoc. Prof. Dr. Mehdi Modabberifar | Automobile Engineering | Research Excellence Award

Associate Professor | Arak University | Iran

Assoc. Prof. Dr. Mehdi Modabberifar is an accomplished researcher with sustained contributions to mechatronic systems, advanced manufacturing, and electrostatic-based actuation technologies, demonstrating a strong balance between theoretical modeling and experimental validation. His professional experience includes active involvement in academic research environments, collaborative projects, and applied engineering studies addressing challenges in precision actuation, robotic manipulation, and smart material systems. His research interests focus on manufacturing processes, mechatronic system design, electrostatic actuators and motors, sensors, gecko-inspired adhesives, robotic grippers, and micro- and nano-scale manipulation, with applications spanning robotics, automation, and intelligent mechanical systems. His research skills encompass system modeling and simulation, actuator and sensor design, experimental mechanics, electrostatic induction mechanisms, robotic end-effector development, data analysis, and performance optimization under varying operational conditions. He has authored a diverse body of peer-reviewed journal and conference publications in reputable international outlets, with several widely cited works on gecko-inspired robotic grippers, electrostatic motors, dielectric sheet conveying, and smart actuator behavior, reflecting both originality and impact. His scholarly output demonstrates interdisciplinary reach across robotics, materials, and manufacturing engineering. Awards and honors include recognition through citation impact and research visibility within his fields of expertise. Overall, his work reflects a consistent trajectory of innovation, methodological rigor, and meaningful contribution to modern mechatronics and intelligent manufacturing research. He has achieved 202 Citations 23 Documents 7 h-index.

 

Citation Metrics (Scopus)

200
100
20
5
0

202
Citations

23
Documents

7
h-index

Citations

Documents

h-index


View Google Scholar Profile

View ORCID Profile

View Scopus Profile

Featured Publications

Sudip Dey | Automobile Engineering | Young Researcher Award |

Mr. Sudip Dey | Automobile Engineering | Young Researcher Award |

The University of Burdwan | India

Mr. Sudip Dey is a researcher specializing in fluid mechanics with experience in nanofluid flow, heat and mass transfer, porous media studies, and advanced slip-condition modeling. His work reflects strong analytical, numerical, and computational skills, alongside notable fellowship achievements and journal publications contributing to applied mathematics. He has acheived 64 Citations 12 Documents  5 h-index.

 

Citation Metrics (Google Scholar)

50
30
20
10
0

64
Citations

12
Documents

5
h-index

Citations

Documents

h-index



View Scopus Profile

View ORCID Profile

Featured Publications

Saint Jacques Le-Majeur MANDELOT-MATETELOT | Powertrain Engineering | Best Innovation Award

Saint Jacques Le-Majeur MANDELOT-MATETELOT | Powertrain Engineering | Best Innovation Award

Research Scholar  |  Pan African University  |  Central African Republic

Mr. Saint Jacques Le-Majeur Mandelot-Matelot is an accomplished civil engineer and academic professional recognized for his expertise in construction management, structural engineering, and sustainable materials. With a strong foundation in civil engineering and extensive leadership experience, he has served as Managing Director of La-Résurrection, overseeing major national and international construction projects involving design, renovation, and structural optimization. His academic and professional trajectory reflects a deep commitment to enhancing infrastructure resilience and sustainability, particularly through his research on the “Effect of Ronier Fiber and Silica Fume on Mechanical and Durability Properties of High-Strength Concrete,” which explores innovative material technologies for high-performance concrete. His research interests focus on advanced construction materials, sustainable infrastructure development, project management, and water and sanitation systems. Skilled in AutoCAD, ArchiCAD, Revit, Artlantis, and Robot, he demonstrates proficiency in structural analysis, geotechnical design, and hydraulic engineering. Beyond his technical expertise, he possesses strong managerial and entrepreneurial capabilities, excelling in tender preparation, cost analysis, and multidisciplinary team coordination. His teaching experience at the University of Bangui highlights his dedication to knowledge transfer, mentoring students in both theoretical and practical aspects of civil engineering. He has published peer-reviewed research articles in reputed journals such as ETASR and Wiley, reflecting his growing contribution to scientific advancement. His professional affiliations with the Order of Civil Engineers of the Central African Republic and the Central African Entrepreneurs Association further underscore his leadership in the engineering community. Among his professional development achievements are certifications in entrepreneurship, innovation, crisis management, and leadership. Through his blend of academic rigor, field experience, and innovation-driven mindset, Mandelot-Matelot continues to contribute to the advancement of sustainable construction and infrastructure systems in Africa and beyond. He has acheived 2 Publications.

 

Profiles:  ORCID | Research Gate

Featured Publications

Mandelot-Matelot, S. J. L., Mogire, P., & Odero, B. (2025, March). Performance of alkali treated and untreated Ronier fiber (Borassus aethiopum) on mechanical and durability properties of reinforced concrete. Engineering Reports, 7(3).

Mandelot-Matelot, S. J. L., Mogire, P., & Odero, B. (2025, January 9). Mechanical and durability assessment of concrete reinforced with treated and untreated Ronier fiber (Borassus aethiopum) [Preprint].

Homayoon Oraizi | Steering Systems | Best Researcher Award

Prof. Homayoon Oraizi | Steering Systems | Best Researcher Award

Professor  |  Iran university of science and technology  |  Iran

Prof. Homayoon Oraizi is a distinguished scholar and exemplary professor whose remarkable contributions have profoundly shaped the fields of electromagnetic theory, microwave engineering, and antenna design. With decades of academic excellence and research leadership, his work has advanced the understanding of electromagnetic wave propagation, leaky-wave antennas, frequency selective surfaces, and reflectarray systems. Throughout his career, he has combined rigorous theoretical analysis with innovative design methodologies to create next-generation microwave and terahertz devices, contributing to both academic research and industrial applications. His expertise encompasses electromagnetic field modeling, computational electromagnetics, signal propagation in complex media, and the development of high-efficiency passive and active devices. A prolific researcher and mentor, he has authored and co-authored numerous high-impact journal articles in renowned publications such as IEEE Transactions on Antennas and Propagation, IET Microwaves, Antennas & Propagation, and Scientific Reports. His research interests also include modern antenna technologies, metamaterials, radio wave propagation, and microwave circuit optimization. Renowned for his analytical precision and deep insight into physical phenomena, Professor Oraizi has guided numerous students and collaborators, contributing significantly to the global electromagnetic research community. His professional achievements reflect not only scientific excellence but also an enduring commitment to innovation, education, and mentorship in electrical engineering. Recognized internationally for his pioneering research, he continues to influence advancements in high-frequency systems and sustainable wireless communication technologies. He has acheived 4,115 Citations, 263 Documents,  33 h-index.

Profiles:  Google Scholar | ORCID | Scopus

Featured Publications

1. Oraizi, H., & Hedayati, S. (2011). Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals. IEEE Antennas and Wireless Propagation Letters, 10, 67–70.

2. Oraizi, H., & Sharifi, A. R. (2006). Design and optimization of broadband asymmetrical multisection Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques, 54(5), 2220–2231.

3. Oraizi, H. (2008). Application of the invasive weed optimization technique for antenna configurations. Progress in Electromagnetics Research, 79, 1–24.

4. Fakhte, S., Oraizi, H., Karimian, R., & Fakhte, R. (2015). A new wideband circularly polarized stair-shaped dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 63(4), 1828–1832.

5. Karimian, R., Oraizi, H., Fakhte, S., & Farahani, M. (2013). Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems. IEEE Antennas and Wireless Propagation Letters, 12, 405–408.

Parinaz Hosseini | Steering Systems | Best Researcher Award

Mrs. Parinaz Hosseini | Steering Systems | Best Researcher Award

Student  |  Iran university of science and technology  |  Iran

Mrs. Parinaz Hosseini is an emerging researcher in the field of microwave and terahertz engineering, known for her focused contributions to the study and design of advanced metasurfaces and graphene-based structures. As a dedicated PhD scholar at the Iran University of Science and Technology, her research primarily explores reflectarray and transmitarray antennas operating in the terahertz frequency band, emphasizing innovations that enhance beam steering, power efficiency, and reconfigurability for next-generation communication systems. Her expertise extends to the development of hybrid graphene–metal metasurfaces, where she has made notable progress in achieving fully controllable beam-steering mechanisms at 1-THz, a pioneering advancement in the field. Parinaz’s technical acumen is supported by a strong foundation in microwave circuit design and electromagnetic simulation, with additional research experience in active and passive microwave devices and MRI power amplifiers. Her skills include computational modeling, electromagnetic wave manipulation, device optimization, and practical antenna prototyping, allowing her to bridge theoretical innovation with engineering application. Through her publications in reputable journals such as Scientific Reports and IET Microwaves, Antennas & Propagation, she has demonstrated a consistent focus on precision, creativity, and technological advancement. Though early in her career, her work reflects a growing impact within the scientific community, supported by collaborative endeavors and potential for interdisciplinary innovation in terahertz systems. Parinaz aspires to contribute to the advancement of high-frequency communication technologies and intelligent electromagnetic devices through innovative design and materials integration. Her academic integrity, research productivity, and commitment to scientific excellence make her a strong candidate for recognition through competitive awards and academic honors. She has acheived 11 Citations , 3 Documents , 1 h-index .

Profiles:  ORCID  |  Scopus

Featured Publications

  1. Hosseini, P., & Oraizi, H. (2022). Analysis and design of terahertz reflectarrays based on graphene cell clusters. Scientific Reports, 12(1), Article 22117.

  2. Hosseini, P., & Oraizi, H. (2025). Fully controllable beam-steering 1-THz transmitarray using graphene–metal hybrid metasurface. IET Microwaves, Antennas & Propagation.

Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Dr. Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Lecturer in Mechanical and Automotive Engineering  | Coventry University | United Kingdom

Dr. Kristaq Hazizi is a Lecturer in Mechanical and Automotive Engineering at Coventry University, with over 15 years of combined academic and industry experience dedicated to advancing sustainable automotive technologies. He earned his Ph.D. in Automotive Engineering from Coventry University in 2013, where his doctoral research centered on advanced engine simulation and alternative fuels to enhance efficiency and reduce emissions. Professionally, Dr. Hazizi has contributed to both academia and industry by leading research projects on engine modeling, combustion optimization, and the integration of renewable fuels into modern powertrain systems. His research interests lie in engine simulation, hybrid propulsion systems, and low-carbon transportation, areas that align with global efforts to achieve cleaner and more efficient mobility solutions. His research skills include advanced numerical modeling, computational fluid dynamics (CFD), thermodynamic analysis, and applied experimental testing for engine performance evaluation. Dr. Hazizi has successfully secured competitive research funding and has collaborated with international teams to promote sustainable energy solutions. His publications appear in reputed IEEE and Scopus-indexed journals and conference proceedings, reflecting a growing influence in the automotive engineering field. In addition to research, he is an active mentor to students, guiding projects and theses in sustainable mobility, and has contributed to professional communities as a member of IEEE and SAE. Dr. Hazizi has received recognition for his academic excellence and contributions to advancing green automotive technologies, including institutional awards for research innovation and teaching. His dedication to bridging research with practical applications demonstrates his commitment to both scientific advancement and societal impact. With a vision to expand international collaborations and publish in more high-impact journals, Dr. Hazizi continues to shape the future of sustainable transportation research, with 17 citations, 4 published documents, and an h-index of 2.

Profiles:  Scopus | ORCID | Google Scholar

Featured Publications

Hazizi, K., & Ghahleeh, M. (2023). Design and analysis of a typical vertical pressure vessel using ASME code and FEA technique. Infrastructures, 7(3), 78. Cited by: 22

Hazizi, K., Ramezanpour, A., Costall, A., & Asadi, M. (2019). Numerical analysis of a turbocharger compressor. E3S Web of Conferences, 95, 04008. Cited by: 6

Gophane, I., Dharashivkar, N., Mulik, P., & Patil, P. (2024). Analysis of pressure vessel. Indian Journal of Science and Technology, 17(12), 1148–1158. Cited by: 2

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Applied Engineering, 4(3), 948–973. Cited by: 1

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Preprints, 2023080788. Cited by: 1