Mohammad Anis | Transportation Engineering | Best Researcher Award

Mr. Mohammad Anis | Transportation Engineering | Best Researcher Award

PhD Student | Texas A&M University| United States

Mr. Mohammad Anis is a dedicated Ph.D. candidate in Civil and Environmental Engineering at Texas A&M University, specializing in traffic safety, autonomous vehicle safety, crash risk modeling, pedestrian safety, and digital twin applications. He previously earned an M.S. in Civil Engineering from the University of Texas Rio Grande Valley (2021), where he conducted pioneering research on electrically heated rigid pavements, and a B.S. in Civil Engineering from Dhaka University of Engineering & Technology, Bangladesh (2018). With over four years of research experience, he has worked extensively on federally and state-funded projects with agencies such as FHWA, TxDOT, NCHRP, FMCSA, and ODOT, contributing to crash prediction models, pedestrian safety analysis, driver distraction studies, and systemic roadway design improvements. His dissertation integrates physics-informed near-miss data with hierarchical Bayesian frameworks for real-time crash occurrence risk estimation, pushing the boundaries of data-driven traffic safety planning. His professional experience includes roles as a doctoral researcher at Texas A&M University, a graduate research assistant at the Texas A&M Transportation Institute, and a graduate teaching assistant at both Texas A&M University and UTRGV, where he mentored students in transportation engineering and civil materials. His research interests lie in real-time safety modeling, AI and machine learning applications in transportation, spatiotemporal crash risk prediction, and sustainable roadway infrastructure. He is skilled in programming (Python, R, MATLAB), statistical modeling (MCMC, machine learning, time-series analysis), traffic simulation tools (SUMO, VISSIM, CARLA), and GIS platforms (ArcGIS, QGIS). He has published widely in high-impact journals such as Accident Analysis & Prevention and Transportation Research Record, along with multiple IEEE and Scopus-indexed conferences. Among his many accolades are the Keese-Wootan Transportation Fellowship (Top 5%), Zachry Excellence Fellowship, Terracon Foundation Scholarship, and Graduate Student Travel Awards. With a strong record of publications, collaborations, and peer-review service, Mr. Anis demonstrates outstanding potential to lead future research in traffic safety and intelligent mobility systems. He has achieved 30 citations across 27 documents, with 8 publications and an h-index of 2.

Profiles:  Scopus | ORCID

Featured Publications

Anis, M., Geedipally, S. R., & Lord, D. (2025). Pedestrian crash causation analysis near bus stops: Insights from random parameters Negative Binomial–Lindley model. Accident Analysis & Prevention, 220, 108137.

Zhang, H., Li, S., Li, Z., Anis, M., Lord, D., & Zhou, Y. (2025). Why anticipatory sensing matters in commercial ACC systems under cut-in scenarios: A perspective from stochastic safety analysis. Accident Analysis & Prevention, 218, 108064

Anis, M., Li, S., Geedipally, S. R., Zhou, Y., & Lord, D. (2025). Real-time risk estimation for active road safety: Leveraging Waymo AV sensor data with hierarchical Bayesian extreme value models. Accident Analysis & Prevention, 211, 107880.

Abdel-Raheem, M., & Anis, M. (2025). Toward sustainability: A new construction method for electrically heated rigid pavement systems. Transportation Research Record: Journal of the Transportation Research Board, 2679(3), 281–303.

Anis, M., & Abdel-Raheem, M. (2024). A review of electrically conductive cement concrete pavement for sustainable snow-removal and deicing: Road safety in cold regions. Transportation Research Record: Journal of the Transportation Research Board, 2678(9), 50–71.

Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Dr. Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Lecturer in Mechanical and Automotive Engineering  | Coventry University | United Kingdom

Dr. Kristaq Hazizi is a Lecturer in Mechanical and Automotive Engineering at Coventry University, with over 15 years of combined academic and industry experience dedicated to advancing sustainable automotive technologies. He earned his Ph.D. in Automotive Engineering from Coventry University in 2013, where his doctoral research centered on advanced engine simulation and alternative fuels to enhance efficiency and reduce emissions. Professionally, Dr. Hazizi has contributed to both academia and industry by leading research projects on engine modeling, combustion optimization, and the integration of renewable fuels into modern powertrain systems. His research interests lie in engine simulation, hybrid propulsion systems, and low-carbon transportation, areas that align with global efforts to achieve cleaner and more efficient mobility solutions. His research skills include advanced numerical modeling, computational fluid dynamics (CFD), thermodynamic analysis, and applied experimental testing for engine performance evaluation. Dr. Hazizi has successfully secured competitive research funding and has collaborated with international teams to promote sustainable energy solutions. His publications appear in reputed IEEE and Scopus-indexed journals and conference proceedings, reflecting a growing influence in the automotive engineering field. In addition to research, he is an active mentor to students, guiding projects and theses in sustainable mobility, and has contributed to professional communities as a member of IEEE and SAE. Dr. Hazizi has received recognition for his academic excellence and contributions to advancing green automotive technologies, including institutional awards for research innovation and teaching. His dedication to bridging research with practical applications demonstrates his commitment to both scientific advancement and societal impact. With a vision to expand international collaborations and publish in more high-impact journals, Dr. Hazizi continues to shape the future of sustainable transportation research, with 17 citations, 4 published documents, and an h-index of 2.

Profiles:  Scopus | ORCID | Google Scholar

Featured Publications

Hazizi, K., & Ghahleeh, M. (2023). Design and analysis of a typical vertical pressure vessel using ASME code and FEA technique. Infrastructures, 7(3), 78. Cited by: 22

Hazizi, K., Ramezanpour, A., Costall, A., & Asadi, M. (2019). Numerical analysis of a turbocharger compressor. E3S Web of Conferences, 95, 04008. Cited by: 6

Gophane, I., Dharashivkar, N., Mulik, P., & Patil, P. (2024). Analysis of pressure vessel. Indian Journal of Science and Technology, 17(12), 1148–1158. Cited by: 2

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Applied Engineering, 4(3), 948–973. Cited by: 1

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Preprints, 2023080788. Cited by: 1