Saint Jacques Le-Majeur MANDELOT-MATETELOT | Powertrain Engineering | Best Innovation Award

Saint Jacques Le-Majeur MANDELOT-MATETELOT | Powertrain Engineering | Best Innovation Award

Research Scholar  |  Pan African University  |  Central African Republic

Mr. Saint Jacques Le-Majeur Mandelot-Matelot is an accomplished civil engineer and academic professional recognized for his expertise in construction management, structural engineering, and sustainable materials. With a strong foundation in civil engineering and extensive leadership experience, he has served as Managing Director of La-Résurrection, overseeing major national and international construction projects involving design, renovation, and structural optimization. His academic and professional trajectory reflects a deep commitment to enhancing infrastructure resilience and sustainability, particularly through his research on the “Effect of Ronier Fiber and Silica Fume on Mechanical and Durability Properties of High-Strength Concrete,” which explores innovative material technologies for high-performance concrete. His research interests focus on advanced construction materials, sustainable infrastructure development, project management, and water and sanitation systems. Skilled in AutoCAD, ArchiCAD, Revit, Artlantis, and Robot, he demonstrates proficiency in structural analysis, geotechnical design, and hydraulic engineering. Beyond his technical expertise, he possesses strong managerial and entrepreneurial capabilities, excelling in tender preparation, cost analysis, and multidisciplinary team coordination. His teaching experience at the University of Bangui highlights his dedication to knowledge transfer, mentoring students in both theoretical and practical aspects of civil engineering. He has published peer-reviewed research articles in reputed journals such as ETASR and Wiley, reflecting his growing contribution to scientific advancement. His professional affiliations with the Order of Civil Engineers of the Central African Republic and the Central African Entrepreneurs Association further underscore his leadership in the engineering community. Among his professional development achievements are certifications in entrepreneurship, innovation, crisis management, and leadership. Through his blend of academic rigor, field experience, and innovation-driven mindset, Mandelot-Matelot continues to contribute to the advancement of sustainable construction and infrastructure systems in Africa and beyond. He has acheived 2 Publications.

 

Profiles:  ORCID | Research Gate

Featured Publications

Mandelot-Matelot, S. J. L., Mogire, P., & Odero, B. (2025, March). Performance of alkali treated and untreated Ronier fiber (Borassus aethiopum) on mechanical and durability properties of reinforced concrete. Engineering Reports, 7(3).

Mandelot-Matelot, S. J. L., Mogire, P., & Odero, B. (2025, January 9). Mechanical and durability assessment of concrete reinforced with treated and untreated Ronier fiber (Borassus aethiopum) [Preprint].

Parinaz Hosseini | Steering Systems | Best Researcher Award

Mrs. Parinaz Hosseini | Steering Systems | Best Researcher Award

Student  |  Iran university of science and technology  |  Iran

Mrs. Parinaz Hosseini is an emerging researcher in the field of microwave and terahertz engineering, known for her focused contributions to the study and design of advanced metasurfaces and graphene-based structures. As a dedicated PhD scholar at the Iran University of Science and Technology, her research primarily explores reflectarray and transmitarray antennas operating in the terahertz frequency band, emphasizing innovations that enhance beam steering, power efficiency, and reconfigurability for next-generation communication systems. Her expertise extends to the development of hybrid graphene–metal metasurfaces, where she has made notable progress in achieving fully controllable beam-steering mechanisms at 1-THz, a pioneering advancement in the field. Parinaz’s technical acumen is supported by a strong foundation in microwave circuit design and electromagnetic simulation, with additional research experience in active and passive microwave devices and MRI power amplifiers. Her skills include computational modeling, electromagnetic wave manipulation, device optimization, and practical antenna prototyping, allowing her to bridge theoretical innovation with engineering application. Through her publications in reputable journals such as Scientific Reports and IET Microwaves, Antennas & Propagation, she has demonstrated a consistent focus on precision, creativity, and technological advancement. Though early in her career, her work reflects a growing impact within the scientific community, supported by collaborative endeavors and potential for interdisciplinary innovation in terahertz systems. Parinaz aspires to contribute to the advancement of high-frequency communication technologies and intelligent electromagnetic devices through innovative design and materials integration. Her academic integrity, research productivity, and commitment to scientific excellence make her a strong candidate for recognition through competitive awards and academic honors. She has acheived 11 Citations , 3 Documents , 1 h-index .

Profiles:  ORCID  |  Scopus

Featured Publications

  1. Hosseini, P., & Oraizi, H. (2022). Analysis and design of terahertz reflectarrays based on graphene cell clusters. Scientific Reports, 12(1), Article 22117.

  2. Hosseini, P., & Oraizi, H. (2025). Fully controllable beam-steering 1-THz transmitarray using graphene–metal hybrid metasurface. IET Microwaves, Antennas & Propagation.