Eshetu Haile Gorfie | Hybrid Vehicles | Research Excellence Award

Dr. Eshetu Haile Gorfie | Hybrid Vehicles | Research Excellence Award

Researcher | Bahir Dar University | Ethiopia

Dr. Eshetu Haile Gorfie is an accomplished academic and researcher with extensive experience in teaching, research, and academic leadership within the field of mathematics. His professional experience spans undergraduate and postgraduate instruction, supervision of MSc and PhD researchers, curriculum coordination, and leadership roles such as department head and program coordinator. His research interests focus on fluid dynamics, magnetohydrodynamics, nanofluid flow, differential equations, numerical methods, and heat and mass transfer phenomena. He possesses strong research skills in mathematical modeling, analytical and numerical analysis, scientific computing, and scholarly publishing, with contributions to high-impact international journals. His awards and honors recognize excellence in teaching, conference leadership, and academic service. Overall, his work demonstrates sustained impact through research productivity, mentorship, and institutional contribution.He has acheived  357 Citations, 19 Documents, 9 h-index.

Citation Metrics (Scopus)

400
300
25
10
0

357
Citations

19
Documents

9
h-index

Citations

Documents

h-index


View Google Scholar Profile

View Scopus Profile

View ORCID Profile

Featured Publications

Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Mr. Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Master Student in Sustainability in Polymer Technology | Deggendorf Institute of Technology | Germany

Mr. Amirmahdi Rahmani is a passionate and forward-thinking researcher whose work bridges sustainability, renewable energy, and advanced materials engineering. His academic foundation and professional journey reflect a deep commitment to advancing eco-friendly technologies and sustainable industrial practices. His research experience spans diverse domains, including green tribology, bio-lubricants, renewable energy systems, and polymer sustainability. Through his professional roles, he has contributed to enhancing mechanical and environmental performance in industrial applications, from improving the mechanical properties of lubricants to optimizing oscillating flow reactors for efficient mixing processes. His collaboration with leading institutions and companies such as Springer Nature, Pardis Shimi Bakhtar Co., and Iran Khodro Co. underscores his technical expertise and research integrity. Rahmani’s publications demonstrate a consistent focus on sustainability and innovation, with studies exploring bio-lubricants, nano-enhancers, zero-carbon village models, and wind energy optimization for greenhouse gas reduction. His research interests lie in sustainable materials development, circular economy integration, renewable energy conversion, and mechanical system optimization for low-carbon technologies. He is skilled in experimental design, computational modeling, life cycle assessment, and energy efficiency analysis, combining theoretical insights with practical applications. His achievements reflect academic rigor, professional discipline, and a global perspective on the transition to sustainable energy systems. Rahmani’s dedication to research excellence and his interdisciplinary approach position him as an emerging scholar in the fields of green technology and sustainable engineering. He has achieved 11 Citations, 3 documents, 2h-index.

Profiles:  Google Scholar Scopus

Featured Publications 

  1. Yousefi, H., Montazeri, M., & Rahmani, A. (2021). Techno-economic analysis of wind turbine systems to reduce carbon emission of greenhouses: A case study in Iran. In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021) (pp. 1–4). IEEE.

  2. Rahmani, A., Razavi, H. K., & Dehghani-Soufi, M. (2024). Green tribology assessment: A comprehensive review of bio-lubricants and nano enhancers. Energy Conversion and Management: X, 24, 100794.

  3. Yousefi, H., Rahmani, A., & Montazeri, M. (2023). Sustainable development through the establishment of zero-carbon villages. In Proceedings of the 8th International Conference on Technology and Energy Management (ICTEM2023). IEEE.

  4. Rahmani, A., Dehghani-Soufi, M., Fazeli, H., & Razavi, H. K. (2024). Experimental analysis of nano additive mixing in bio-lubricants: Implications for tribological performance using oscillatory flow technology. Available at SSRN 5118516.

    Mr. Amirmahdi Rahmani’s research advances sustainable energy and green tribology through innovative material science and renewable technology integration. His work bridges environmental engineering and mechanical optimization, providing scalable solutions for low-carbon industries. By combining experimental and techno-economic analyses, Rahmani contributes to the global transition toward sustainable manufacturing, clean energy systems, and environmentally responsible engineering innovation.

 

Athanasios Kanavos | Vehicular Communication Systems | Best Researcher Award

Dr. Athanasios Kanavos | Vehicular Communication Systems | Best Researcher Award

Postdoctoral Researcher  |  Department of Informatics and Telecommunications, Tripoli  |  Greece

Dr. Athanasios Kanavos is a distinguished postdoctoral researcher at the Department of Informatics and Telecommunications, University of Peloponnese, where he contributes extensively to the Wireless and Mobile Communications Lab. His professional expertise lies in advanced V2X communications, cellular networks, and communication protocols, focusing on optimizing network performance for next-generation intelligent transportation systems. His ongoing research emphasizes reinforcement learning-based scheduling techniques for autonomous driving applications in emerging 6G cellular networks, addressing challenges in resource allocation, latency, and reliability. Dr. Kanavos’s research interests span cellular communications, network performance evaluation, handover and scheduling algorithms, and the integration of AI/ML techniques for intelligent network management. His technical proficiency and research skills include simulation-based protocol design, performance analysis, and algorithmic optimization for vehicular and wireless communication systems. With several impactful publications in respected international journals such as Telecom and ACM conferences, his scholarly contributions have advanced the understanding of adaptive scheduling mechanisms and their application in vehicular communication environments. His innovative approaches have significantly improved throughput, connectivity stability, and communication reliability in dynamic vehicular networks, showcasing both academic excellence and industrial relevance. Recognized for his scientific rigor and commitment to the advancement of wireless communication technologies, Dr. Kanavos continues to influence future developments in connected mobility and smart transportation. His dedication to bridging the gap between theoretical research and practical solutions underscores his position as a leading figure in the field of next-generation communication systems. He has achieved 30 Citations,  4 Documents, 2 h-index.

Profiles:  ORCID  |  Scopus

Featured Publications 

1. Kanavos, A., & Kaloxylos, A. (2025, February 19). V2X Communications in Highway Environments: Scheduling Challenges and Solutions for 6G Networks. Telecom.

2. Kanavos, A., Barmpounakis, S., & Kaloxylos, A. (2023, July 6). An Adaptive Scheduling Mechanism Optimized for V2N Communications over Future Cellular Networks. Telecom.

3. Kanavos, A., Fragkos, D., & Kaloxylos, A. (2021, January). V2X Communication over Cellular Networks: Capabilities and Challenges. Telecom.

4. Kanavos, A., Fragkos, D., & Kaloxylos, A. (2020, November 20). Delay and Spectrum Analysis for V2X Communication over 5G Networks. 24th Pan-Hellenic Conference on Informatics.

Dr. Athanasios Kanavos’s research advances the evolution of intelligent transportation systems by enhancing the efficiency and reliability of V2X communications within 5G and 6G networks. His innovative scheduling and resource allocation mechanisms contribute to safer, low-latency, and more connected vehicular ecosystems—driving global progress toward autonomous mobility and smarter urban infrastructures.

Ding Peng | Autonomous Vehicles | Best Researcher Award

Assist. Prof. Dr. Ding Peng | Autonomous Vehicles | Best Researcher Award

Associate Professor | Wuxi University of Technology |China

Assist. Prof. Dr. Ding Peng is an accomplished academic and researcher currently serving as an Associate Professor at Wuxi University of Technology, formerly known as Wuxi Institute of Technology, China. He is also a key member of the Jiangsu Province Engineering Research Center for Energy Saving and Safety of New Energy Vehicles, where he plays a vital role in promoting innovation and sustainability in the automotive sector. Dr. Peng obtained his degree in Vehicle Engineering from Chongqing University which laid a strong foundation for his expertise in intelligent vehicle systems and new energy technologies. His professional experience includes working as a Design Engineer at King Long United Automotive Industry (Suzhou) Co., Ltd., where he participated in the design and development of commercial buses, followed by a distinguished academic career at Wuxi University of Technology . Over the years, Dr. Peng has demonstrated exceptional competence in teaching and research, covering courses such as Automobile Structure, Automobile Theory, Principles of Automatic Control, and Intelligent and Connected Vehicle Technologies. His research interests focus on thermal management technologies for new energy vehicles, autonomous vehicle control strategies, and intelligent connected vehicle (V2X) technologies. His research skills encompass modeling, simulation, data fusion, control algorithms, and system optimization, emphasizing practical integration between academia and industry. Dr. Peng has led numerous enterprise and government-funded projects, published several high-impact academic papers, and secured multiple national patents, showcasing his dedication to advancing innovation in smart and sustainable mobility. His awards and honors include recognition for his leadership in research excellence, academic innovation, and contributions to engineering education. Driven by a vision of merging scientific theory with real-world application, he continues to nurture the next generation of engineers while advancing intelligent vehicle technologies. He has achieved 29 citations , authored 7 scientific papers, and holds an h-index of 2 .

Profiles:  Scopus | ORCID

Featured Publications

  1. Ding, P. (2025). A Cooperative Control Strategy for Predicting Passing Capacity and Intelligent Obstacle Avoidance in Autonomous Vehicles Based on Multisensor Fusion. Journal of Energy Storage.
  2. Ding, P. (2024). A distributed multiple-heat source staged heating method in an electric vehicle. International Journal of Vehicle Performance and Energy Systems.

  3. Ding, P. (2024). Distributed multi-heat-source hybrid heating system based on waste heat recovery for electric vehicles. Journal of Thermal Science and Energy Engineering.

  4. Ding, P. (2023). Research on interactive coupled preheating method utilizing engine-motor cooling waste heat in hybrid powertrains. Applied Thermal Engineering