Swati Mukhopadhyay | Automobile Engineering | Research Excellence Award

Prof. Swati Mukhopadhyay | Automobile Engineering| Research Excellence Award

The University of Burdwan  |  India

Prof. Swati Mukhopadhyay is a leading mathematics researcher known for influential work in fluid mechanics, nanofluid dynamics, and heat-mass transfer, supported by strong analytical, computational, and modeling skills. Her extensive publications, global collaborations, and numerous international recognitions highlight her impact on advanced transport phenomena research. She has achieved 5,847 Citations ,169 Documents,  h-index 45.

 

Citation Metrics (Google Scholar)

5000
3000
2000
1000
500
200
100
50
0

5847
Citations

169
Documents

45
h-index

Citations

Documents

h-index



View Scopus Profile

View Google scholar Profile

View ORCID Profile

Featured Publications


Insight into the Forced Convective Radiative Stefan Flow of Nanofluid over an Unsteady Stretched Sheet

– International Journal of Computational Materials Science and Engineering, 2026


Insight into the Forced Convective Radiative Stefan Flow of Nanofluid over an Unsteady Stretched Sheet

– International Journal of Computational Materials Science and Engineering, 2026

Nashir Umirov | Automobile Awards | Editorial Board Member

Assoc. Prof. Dr. Nashir Umirov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Assoc. Prof. Dr. Nashir Umirov is an accomplished engineering researcher and academic leader whose work advances the performance, reliability, and thermodynamic behavior of tractors, automobiles, and grain-processing machinery, with a focus on strengthening agricultural mechanization technologies for modern industry. His professional experience spans extensive teaching, research supervision, and applied engineering work, including several years of scientific and editorial engagement that support the development, evaluation, and dissemination of technical innovations. His research interests center on thermal and dynamic properties of vehicles, efficiency enhancement of automotive systems, and the mechanics of grain-crushing processes in industrial crushers, complemented by strong analytical skills in experimental testing, performance modeling, mechanical system optimization, and technology assessment. He has contributed to more than fifteen notable scientific publications and participated in two important research projects aimed at improving agricultural machine operations and advancing environmentally conscious engineering solutions. His research skills include experimental diagnostics, thermal analysis, vibration and dynamic modeling, mechanical system design, and result interpretation for system improvement. Although he is not affiliated with professional societies, he remains an active contributor to engineering scholarship and a committed mentor to emerging specialists. While awards and honors are not listed, his career reflects sustained professional impact and dedication to advancing engineering science. In conclusion, Nashir Umirov continues to enhance the scientific community through consistent research output, practical innovation, and a strong commitment to the evolution of mechanical engineering within the agricultural sector, reflecting the depth of his expertise and the relevance of his contributions to modern mechanization technologies.He has achieved 34 Citations, 14 Documents, 4 h-index.

Profiles:  Google Scholar Scopus | ORCID

Featured Publications 

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020. (5 citations)

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153. (5 citations)

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117. (5 citations)

Li, A., Sultanov, B., Sharipov, Z., & Umirov, N. (2021). Modelling the process of local application of manure under glass crops. IOP Conference Series: Earth and Environmental Science, 868(1), 012008. (4 citations)

Umirov, N., & Abdurokhmonov, S. (2021). Algorithm for calculating finned plate radiators for the cooling system of automobile and tractor engines. IOP Conference Series: Earth and Environmental Science, 868(1), 012002. (3 citations)

Nashir Umirov’s research strengthens agricultural mechanization by improving the thermal stability, efficiency, and reliability of vehicle and engine cooling systems essential for modern farming. His engineering innovations support sustainable agricultural productivity, reduced energy losses, and enhanced performance of critical agro-industrial machinery. His vision contributes to a future where smarter mechanical systems drive global food security and technological resilience.

Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Assoc. Prof. Dr. Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Dr. Abdurakhmanov Shavkatjon Khasanovich is a distinguished Associate Professor and PhD scholar renowned for his significant contributions to the field of agricultural mechanization and thermal dynamics within mechanical engineering. Currently serving at the Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, he has built a strong academic and research foundation focused on advancing the efficiency, performance, and sustainability of agricultural and automotive systems. His research interests span the thermal-dynamic properties of tractors and automobiles, as well as the optimization of grain crushing processes in crushers—critical areas that bridge agricultural engineering with energy efficiency and mechanical innovation. Over his academic career, Dr. Abdurakhmanov has actively participated in four major research projects and has contributed to over twenty peer-reviewed publications, demonstrating a robust commitment to applied research and practical engineering solutions. His professional experience includes teaching, mentoring, and conducting experimental studies on machine performance under varying operational conditions, thereby strengthening the technological framework for modern agricultural systems. With two years of editorial and research review experience, he brings analytical precision and scholarly rigor to the scientific community. His research skills encompass thermodynamic analysis, mechanical system design, process modeling, and equipment optimization for agricultural production. Dr. Abdurakhmanov’s dedication to advancing sustainable mechanization technologies has earned him recognition for his academic excellence and his role in driving innovation within Uzbekistan’s agricultural sector. His ongoing work continues to contribute to the modernization of agricultural machinery and the improvement of energy efficiency in mechanized systems, aligning with global goals for sustainable development and technological advancement.He has achieved 68 citations, 22 documents, 5h-index.

Profiles:  Google Scholar  |  Scopus | ORCID

Featured Publications 

Akhmetov, A., Botirov, R., & Abdurokhmonov, S. (2020). Mechanism for changing the rear axle clearance of a universal-tiller tractor. IOP Conference Series: Materials Science and Engineering, 883(1), 012125.

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020.

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153.

Abdurokhmonov, S., Alijanov, D., & Ismaylov, K. (2020). Forces affecting the grain movement in the working chamber of the rotary crusher. IOP Conference Series: Earth and Environmental Science, 614(1), 012110.

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117.

 

Dr. Abdurakhmanov Shavkatjon Khasanovich advances the understanding of thermal and mechanical processes in agricultural and automotive systems, contributing to improved efficiency and sustainability in machinery design. His work bridges engineering innovation with practical agricultural applications, enhancing productivity while reducing environmental impact—supporting global progress toward smarter, energy-efficient mechanization

Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Mr. Amirmahdi Rahmani | Environmental Impact of Vehicles | Editorial Board Member

Master Student in Sustainability in Polymer Technology | Deggendorf Institute of Technology | Germany

Mr. Amirmahdi Rahmani is a passionate and forward-thinking researcher whose work bridges sustainability, renewable energy, and advanced materials engineering. His academic foundation and professional journey reflect a deep commitment to advancing eco-friendly technologies and sustainable industrial practices. His research experience spans diverse domains, including green tribology, bio-lubricants, renewable energy systems, and polymer sustainability. Through his professional roles, he has contributed to enhancing mechanical and environmental performance in industrial applications, from improving the mechanical properties of lubricants to optimizing oscillating flow reactors for efficient mixing processes. His collaboration with leading institutions and companies such as Springer Nature, Pardis Shimi Bakhtar Co., and Iran Khodro Co. underscores his technical expertise and research integrity. Rahmani’s publications demonstrate a consistent focus on sustainability and innovation, with studies exploring bio-lubricants, nano-enhancers, zero-carbon village models, and wind energy optimization for greenhouse gas reduction. His research interests lie in sustainable materials development, circular economy integration, renewable energy conversion, and mechanical system optimization for low-carbon technologies. He is skilled in experimental design, computational modeling, life cycle assessment, and energy efficiency analysis, combining theoretical insights with practical applications. His achievements reflect academic rigor, professional discipline, and a global perspective on the transition to sustainable energy systems. Rahmani’s dedication to research excellence and his interdisciplinary approach position him as an emerging scholar in the fields of green technology and sustainable engineering. He has achieved 11 Citations, 3 documents, 2h-index.

Profiles:  Google Scholar Scopus

Featured Publications 

  1. Yousefi, H., Montazeri, M., & Rahmani, A. (2021). Techno-economic analysis of wind turbine systems to reduce carbon emission of greenhouses: A case study in Iran. In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021) (pp. 1–4). IEEE.

  2. Rahmani, A., Razavi, H. K., & Dehghani-Soufi, M. (2024). Green tribology assessment: A comprehensive review of bio-lubricants and nano enhancers. Energy Conversion and Management: X, 24, 100794.

  3. Yousefi, H., Rahmani, A., & Montazeri, M. (2023). Sustainable development through the establishment of zero-carbon villages. In Proceedings of the 8th International Conference on Technology and Energy Management (ICTEM2023). IEEE.

  4. Rahmani, A., Dehghani-Soufi, M., Fazeli, H., & Razavi, H. K. (2024). Experimental analysis of nano additive mixing in bio-lubricants: Implications for tribological performance using oscillatory flow technology. Available at SSRN 5118516.

    Mr. Amirmahdi Rahmani’s research advances sustainable energy and green tribology through innovative material science and renewable technology integration. His work bridges environmental engineering and mechanical optimization, providing scalable solutions for low-carbon industries. By combining experimental and techno-economic analyses, Rahmani contributes to the global transition toward sustainable manufacturing, clean energy systems, and environmentally responsible engineering innovation.