Nashir Umirov | Automobile Awards | Editorial Board Member

Assoc. Prof. Dr. Nashir Umirov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Assoc. Prof. Dr. Nashir Umirov is an accomplished engineering researcher and academic leader whose work advances the performance, reliability, and thermodynamic behavior of tractors, automobiles, and grain-processing machinery, with a focus on strengthening agricultural mechanization technologies for modern industry. His professional experience spans extensive teaching, research supervision, and applied engineering work, including several years of scientific and editorial engagement that support the development, evaluation, and dissemination of technical innovations. His research interests center on thermal and dynamic properties of vehicles, efficiency enhancement of automotive systems, and the mechanics of grain-crushing processes in industrial crushers, complemented by strong analytical skills in experimental testing, performance modeling, mechanical system optimization, and technology assessment. He has contributed to more than fifteen notable scientific publications and participated in two important research projects aimed at improving agricultural machine operations and advancing environmentally conscious engineering solutions. His research skills include experimental diagnostics, thermal analysis, vibration and dynamic modeling, mechanical system design, and result interpretation for system improvement. Although he is not affiliated with professional societies, he remains an active contributor to engineering scholarship and a committed mentor to emerging specialists. While awards and honors are not listed, his career reflects sustained professional impact and dedication to advancing engineering science. In conclusion, Nashir Umirov continues to enhance the scientific community through consistent research output, practical innovation, and a strong commitment to the evolution of mechanical engineering within the agricultural sector, reflecting the depth of his expertise and the relevance of his contributions to modern mechanization technologies.He has achieved 34 Citations, 14 Documents, 4 h-index.

Profiles:  Google Scholar Scopus | ORCID

Featured Publications 

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020. (5 citations)

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153. (5 citations)

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117. (5 citations)

Li, A., Sultanov, B., Sharipov, Z., & Umirov, N. (2021). Modelling the process of local application of manure under glass crops. IOP Conference Series: Earth and Environmental Science, 868(1), 012008. (4 citations)

Umirov, N., & Abdurokhmonov, S. (2021). Algorithm for calculating finned plate radiators for the cooling system of automobile and tractor engines. IOP Conference Series: Earth and Environmental Science, 868(1), 012002. (3 citations)

Nashir Umirov’s research strengthens agricultural mechanization by improving the thermal stability, efficiency, and reliability of vehicle and engine cooling systems essential for modern farming. His engineering innovations support sustainable agricultural productivity, reduced energy losses, and enhanced performance of critical agro-industrial machinery. His vision contributes to a future where smarter mechanical systems drive global food security and technological resilience.

Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Assoc. Prof. Dr. Shavkatjon Abdurakhmonov | Automobile Engineering | Editorial Board Member

Associate Professor | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University | Uzbekistan

Dr. Abdurakhmanov Shavkatjon Khasanovich is a distinguished Associate Professor and PhD scholar renowned for his significant contributions to the field of agricultural mechanization and thermal dynamics within mechanical engineering. Currently serving at the Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, he has built a strong academic and research foundation focused on advancing the efficiency, performance, and sustainability of agricultural and automotive systems. His research interests span the thermal-dynamic properties of tractors and automobiles, as well as the optimization of grain crushing processes in crushers—critical areas that bridge agricultural engineering with energy efficiency and mechanical innovation. Over his academic career, Dr. Abdurakhmanov has actively participated in four major research projects and has contributed to over twenty peer-reviewed publications, demonstrating a robust commitment to applied research and practical engineering solutions. His professional experience includes teaching, mentoring, and conducting experimental studies on machine performance under varying operational conditions, thereby strengthening the technological framework for modern agricultural systems. With two years of editorial and research review experience, he brings analytical precision and scholarly rigor to the scientific community. His research skills encompass thermodynamic analysis, mechanical system design, process modeling, and equipment optimization for agricultural production. Dr. Abdurakhmanov’s dedication to advancing sustainable mechanization technologies has earned him recognition for his academic excellence and his role in driving innovation within Uzbekistan’s agricultural sector. His ongoing work continues to contribute to the modernization of agricultural machinery and the improvement of energy efficiency in mechanized systems, aligning with global goals for sustainable development and technological advancement.He has achieved 68 citations, 22 documents, 5h-index.

Profiles:  Google Scholar  |  Scopus | ORCID

Featured Publications 

Akhmetov, A., Botirov, R., & Abdurokhmonov, S. (2020). Mechanism for changing the rear axle clearance of a universal-tiller tractor. IOP Conference Series: Materials Science and Engineering, 883(1), 012125.

Umirov, N., Abdurokhmonov, S., Ganiboyeva, E., & Alimova, Z. (2024). Thermal equilibrium of the tractor and vehicle engines’ cooling systems in agriculture technological processes. BIO Web of Conferences, 105, 05020.

Umirov, N., & Abdurokhmonov, S. (2022). On the de-aeration properties of radiators of the cooling system of engines of cars and tractors. Transportation Research Procedia, 63, 149–153.

Abdurokhmonov, S., Alijanov, D., & Ismaylov, K. (2020). Forces affecting the grain movement in the working chamber of the rotary crusher. IOP Conference Series: Earth and Environmental Science, 614(1), 012110.

Alijanov, D., Abdurokhmonov, S., & Umirov, N. (2020). Methods of regulating the work of units at irrigation pumping stations. IOP Conference Series: Materials Science and Engineering, 883(1), 012117.

 

Dr. Abdurakhmanov Shavkatjon Khasanovich advances the understanding of thermal and mechanical processes in agricultural and automotive systems, contributing to improved efficiency and sustainability in machinery design. His work bridges engineering innovation with practical agricultural applications, enhancing productivity while reducing environmental impact—supporting global progress toward smarter, energy-efficient mechanization

Mohammad Anis | Transportation Engineering | Best Researcher Award

Mr. Mohammad Anis | Transportation Engineering | Best Researcher Award

PhD Student | Texas A&M University| United States

Mr. Mohammad Anis is a dedicated Ph.D. candidate in Civil and Environmental Engineering at Texas A&M University, specializing in traffic safety, autonomous vehicle safety, crash risk modeling, pedestrian safety, and digital twin applications. He previously earned an M.S. in Civil Engineering from the University of Texas Rio Grande Valley (2021), where he conducted pioneering research on electrically heated rigid pavements, and a B.S. in Civil Engineering from Dhaka University of Engineering & Technology, Bangladesh (2018). With over four years of research experience, he has worked extensively on federally and state-funded projects with agencies such as FHWA, TxDOT, NCHRP, FMCSA, and ODOT, contributing to crash prediction models, pedestrian safety analysis, driver distraction studies, and systemic roadway design improvements. His dissertation integrates physics-informed near-miss data with hierarchical Bayesian frameworks for real-time crash occurrence risk estimation, pushing the boundaries of data-driven traffic safety planning. His professional experience includes roles as a doctoral researcher at Texas A&M University, a graduate research assistant at the Texas A&M Transportation Institute, and a graduate teaching assistant at both Texas A&M University and UTRGV, where he mentored students in transportation engineering and civil materials. His research interests lie in real-time safety modeling, AI and machine learning applications in transportation, spatiotemporal crash risk prediction, and sustainable roadway infrastructure. He is skilled in programming (Python, R, MATLAB), statistical modeling (MCMC, machine learning, time-series analysis), traffic simulation tools (SUMO, VISSIM, CARLA), and GIS platforms (ArcGIS, QGIS). He has published widely in high-impact journals such as Accident Analysis & Prevention and Transportation Research Record, along with multiple IEEE and Scopus-indexed conferences. Among his many accolades are the Keese-Wootan Transportation Fellowship (Top 5%), Zachry Excellence Fellowship, Terracon Foundation Scholarship, and Graduate Student Travel Awards. With a strong record of publications, collaborations, and peer-review service, Mr. Anis demonstrates outstanding potential to lead future research in traffic safety and intelligent mobility systems. He has achieved 21 citations across 18 documents, with 8 publications and an h-index of 2.

Profiles:  Scopus | ORCID

Featured Publications

Anis, M., Geedipally, S. R., & Lord, D. (2025). Pedestrian crash causation analysis near bus stops: Insights from random parameters Negative Binomial–Lindley model. Accident Analysis & Prevention, 220, 108137.

Zhang, H., Li, S., Li, Z., Anis, M., Lord, D., & Zhou, Y. (2025). Why anticipatory sensing matters in commercial ACC systems under cut-in scenarios: A perspective from stochastic safety analysis. Accident Analysis & Prevention, 218, 108064

Anis, M., Li, S., Geedipally, S. R., Zhou, Y., & Lord, D. (2025). Real-time risk estimation for active road safety: Leveraging Waymo AV sensor data with hierarchical Bayesian extreme value models. Accident Analysis & Prevention, 211, 107880.

Abdel-Raheem, M., & Anis, M. (2025). Toward sustainability: A new construction method for electrically heated rigid pavement systems. Transportation Research Record: Journal of the Transportation Research Board, 2679(3), 281–303.

Anis, M., & Abdel-Raheem, M. (2024). A review of electrically conductive cement concrete pavement for sustainable snow-removal and deicing: Road safety in cold regions. Transportation Research Record: Journal of the Transportation Research Board, 2678(9), 50–71.