Hongbo Wang | Vehicle Dynamics | Best Researcher Award

Prof. Hongbo Wang | Vehicle Dynamics | Best Researcher Award

Professor  |  Hefei University of Technology  | China

Prof. Hongbo Wang is a distinguished scholar whose work in intelligent vehicle dynamics and control has shaped both academic research and industrial applications, consistently advancing methodologies in vehicle motion modeling, intelligent control algorithms, and automated driving technologies. With extensive experience leading more than forty national, provincial, and municipal projects, his professional contributions span high-impact investigations into off-road vehicle technology, autonomous driving stability, integrated chassis control, and intelligent mobility systems. His research interests focus on vehicle dynamic behavior analysis, intelligent control strategies, computational modeling, and multi-source information fusion for advanced driving systems, supported by strong research skills in algorithm development, real-time system implementation, experimental platform construction, and interdisciplinary engineering integration. His portfolio of scientific achievements includes more than one hundred academic publications, thirty authorized invention patents, six software copyrights, participation in two provincial standard developments, and the publication of two influential monographs, positioning him as a leading contributor to the field’s evolution. His professional experience is complemented by service roles such as External Expert of the Off-Road Vehicle Technology Branch of the Chinese Society of Automotive Engineers, Member of the Vehicle Control and Intelligentization Technical Committee of the Chinese Association of Automation, and Director of the Anhui Society of Automotive Engineers, reflecting broad recognition across national organizations. His awards include the First Prize of the Science and Technology Award of the Chinese Society of Automotive Engineers, the Second Prize of the Machinery Industry Technology Invention Award, and multiple Anhui Provincial Teaching Achievement Awards, underscoring excellence in both research innovation and educational leadership. Overall, his career demonstrates a sustained commitment to advancing intelligent automotive technologies and fostering academic growth in the engineering community. He has achieved 532 Citations,  63 Documents , 12 h-index.

Profile:  Scopus

Featured Publications 

1. Wang, H., et al. (2025). Multi-objective parallel human–machine steering coordination control strategy of intelligent vehicles path tracking based on deep reinforcement learning. Chinese Journal of Mechanical Engineering (English Edition).

2. Wang, H., et al. (2025). Trajectory tracking multi-constraint model predictive control of unmanned vehicles based on sideslip stiffness estimation with XGBoost algorithm. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.

3. Wang, H., et al. (2025). Yaw stability control of tractor vehicle based on nonsingular fast terminal sliding mode. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.

4. Wang, H., et al. (2025). Intelligent vehicle path tracking coordinated optimization based on dual-steering cooperative game with fault-tolerant function. Applied Mathematical Modelling.

5. Wang, H., et al. (2025). Identification of intrusion obstacles for underground locomotives based on the fusion of LiDAR and wireless positioning technology. International Journal of Vehicle Performance.

Professor Hongbo Wang’s research advances intelligent vehicle control by integrating reinforcement learning, predictive modeling, and human–machine cooperation to enhance safety, stability, and autonomy. His work contributes directly to next-generation intelligent transportation systems, improves industrial vehicle technologies, and supports global innovation in automated mobility.

Eshetu Gorfie | Hybrid Vehicles | Best Researcher Award

Assoc. Prof. Dr. Eshetu Gorfie | Hybrid Vehicles | Best Researcher Award

Researcher | Bahir Dar University | Ethiopia

Dr. Eshetu Haile is a distinguished mathematician and academician who has made remarkable contributions to mathematical sciences through his extensive teaching, research, and leadership experience. With over two decades of service at Bahir Dar University, Ethiopia, he has been instrumental in shaping the academic and research culture within the Department of Mathematics. His professional career reflects excellence in teaching both undergraduate and postgraduate students, supervising more than 30 MSc and 8 PhD candidates, and providing strong mentorship to emerging researchers. Dr. Haile’s research interests encompass fluid dynamics, differential equations, complex analysis, special functions, and fractional calculus, areas in which he has published more than 37 peer-reviewed papers in reputed international journals. His research skills include mathematical modeling, computational fluid dynamics, analytical methods, and the application of advanced numerical techniques in solving real-world scientific and engineering problems. Beyond academia, he has demonstrated outstanding leadership as Head of the Mathematics Department, Coordinator of Distance Education Programs, and Chair of various institutional committees, contributing significantly to academic development and policy formation. His dedication to quality education and research excellence has been recognized through multiple honors, including Best Teacher of the Year and appreciation awards for leadership and conference organization. Dr. Haile’s scholarly achievements continue to influence both theoretical and applied mathematics, advancing knowledge in modern fluid mechanics and computational mathematics. His commitment to fostering academic innovation and community engagement underscores his vital role in Ethiopia’s higher education landscape and the global scientific community.He has acheived  334 Citations, 15 Documents, 9 h-index.

Profiles:  ORCID | Research Gate | Scopus

Featured Publications

1. Moltot, A. T., Haile Gorfie, E., Zergaw, G. A., & Asress, H. D. (2025). Influences of variable thermal conductivity, viscous dissipation, and Cattaneo–Christov heat and mass fluxes on MHD tangent hyperbolic ternary hybrid nanofluid flow over a stretching sheet. Engineering Reports.

2. Eneyew, E., Haile, E., Walelgn, A., & Tsegaw, E. (2025, May 14). Dual-phase thermal and concentration relaxation effects on magneto-viscoelastic Williamson nanofluid: A Cattaneo–Christov flux approach. Preprint.

3. Haile Gorfie, E., Moltot, A. T., Zergaw, G. A., & Dessie, H. (2025). Influence of Joule heating and nonlinear thermal radiation on the electrical conductivity of second-grade hybrid nanofluid flow over a stretching cylinder. Engineering Reports.

4. Tsegaye, A., Haile, E., Zergaw, G. A., & Dessie, H. (2025, March 31). Effect of non-linear thermal radiation and Cattaneo–Christov heat and mass fluxes on the flow of Williamson hybrid nanofluid over a stretching porous sheet [version 2; peer review: 2 approved, 2 approved with reservations]. F1000Research.

5. Moltot, A. T., Haile Gorfie, E., Zergaw, G. A., & Dessie, H. (2025, March 10). Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a Darcy–Forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity [version 2; peer review: 3 approved]. F1000Research.

 

 

Tong Wang | Automotive Materials | Young Scientist Award

Assoc. Prof. Dr. Tong Wang | Automotive Materials | Young Scientist Award

Deputy director| Changan university | China


Tong Wang is an accomplished scholar and innovator in the field of automotive and vehicle engineering, currently serving as an Associate Professor, Doctoral (International) and Master’s Supervisor at the School of Automotive Engineering, China. He holds a Ph.D. in Engineering, specializing in intelligent electric vehicle design and lightweight smart design technologies, with a strong academic background rooted in advanced mechanical systems and sustainable mobility solutions. Throughout his professional career, Dr. Wang has built extensive expertise through his active participation in over 20 research projects, including both national and international collaborations, contributing significantly to the advancement of intelligent, low-carbon, and high-efficiency vehicle systems. His professional experience extends beyond academia into technology innovation networks, serving as a Young Expert of the Lightweight Technology Innovation Strategic Alliance under the China Society of Automotive Engineers, a Member of the Flying Car Branch of the Chinese Aeronautical Society, and an active participant in the Shaanxi Automotive Engineering Society’s Youth Working Committee and Low-Carbon Environmental Protection Branch. Dr. Wang’s research interests encompass intelligent electric vehicle development, structural lightweighting, computational vehicle design, and sustainable transportation systems, with research skills spanning computer-aided engineering (CAE), multi-objective optimization, material simulation, and dynamic modeling. He has authored more than 20 peer-reviewed publications in Scopus- and IEEE-indexed journals, delivered over 10 conference presentations, and holds over 10 patents, reflecting a robust integration of theory and application. Among his recognitions, Dr. Wang has been honored as a Jiangsu Province Double Innovation Talent, highlighting his leadership in academic innovation and practical engineering. Overall, his consistent contributions to research, mentorship, and technological development underscore his strong potential to lead the next generation of sustainable automotive innovation and research excellence in China and beyond. Dr. Wang Tong has 11 citations, 9 published papers, and an h-index of 2 (view h-index button is disabled in preview mode).

Profiles:  Scopus | ORCID  | Research Gate

Featured Publications

Wang, T., Ma, Y., & Wang, S. (2024). Intelligent prediction method for thermal properties of automotive basalt fiber composite materials based on fitting normalization function. Materials Today Communications. SSRN.

 

 

 

Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Dr. Kristaq Hazizi | Automotive Engineering | Best Researcher Award

Lecturer in Mechanical and Automotive Engineering  | Coventry University | United Kingdom

Dr. Kristaq Hazizi is a Lecturer in Mechanical and Automotive Engineering at Coventry University, with over 15 years of combined academic and industry experience dedicated to advancing sustainable automotive technologies. He earned his Ph.D. in Automotive Engineering from Coventry University in 2013, where his doctoral research centered on advanced engine simulation and alternative fuels to enhance efficiency and reduce emissions. Professionally, Dr. Hazizi has contributed to both academia and industry by leading research projects on engine modeling, combustion optimization, and the integration of renewable fuels into modern powertrain systems. His research interests lie in engine simulation, hybrid propulsion systems, and low-carbon transportation, areas that align with global efforts to achieve cleaner and more efficient mobility solutions. His research skills include advanced numerical modeling, computational fluid dynamics (CFD), thermodynamic analysis, and applied experimental testing for engine performance evaluation. Dr. Hazizi has successfully secured competitive research funding and has collaborated with international teams to promote sustainable energy solutions. His publications appear in reputed IEEE and Scopus-indexed journals and conference proceedings, reflecting a growing influence in the automotive engineering field. In addition to research, he is an active mentor to students, guiding projects and theses in sustainable mobility, and has contributed to professional communities as a member of IEEE and SAE. Dr. Hazizi has received recognition for his academic excellence and contributions to advancing green automotive technologies, including institutional awards for research innovation and teaching. His dedication to bridging research with practical applications demonstrates his commitment to both scientific advancement and societal impact. With a vision to expand international collaborations and publish in more high-impact journals, Dr. Hazizi continues to shape the future of sustainable transportation research, with 16 citations, 3 published documents, and an h-index of 2.

Profiles:  Scopus | ORCID | Google Scholar

Featured Publications

Hazizi, K., & Ghahleeh, M. (2023). Design and analysis of a typical vertical pressure vessel using ASME code and FEA technique. Infrastructures, 7(3), 78. Cited by: 22

Hazizi, K., Ramezanpour, A., Costall, A., & Asadi, M. (2019). Numerical analysis of a turbocharger compressor. E3S Web of Conferences, 95, 04008. Cited by: 6

Gophane, I., Dharashivkar, N., Mulik, P., & Patil, P. (2024). Analysis of pressure vessel. Indian Journal of Science and Technology, 17(12), 1148–1158. Cited by: 2

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Applied Engineering, 4(3), 948–973. Cited by: 1

Hazizi, K., Ghahleeh, M., & Rasool, S. (2023). Analytical and numerical investigation of fatigue life in rectangular plates with opposite semicircular edge single notches. Preprints, 2023080788. Cited by: 1